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Abstract

Non-stationary processes of a rotor/bearing system were dealt with by taking the rotating angular speed,
increases or decreases linearly at different levels of acceleration, as control parameter. The stationary
bifurcation diagrams show that the period doubling bifurcation or quasi-periodic bifurcation,
corresponding to the system with larger or smaller level of mass imbalance, respectively, occurs smoothly
as the control parameter is increased or decreased in stationary manner. Then, the non-stationary processes
of these two types of bifurcation were investigated by constructions of the non-stationary bifurcation
diagrams using non-stationary bifurcation map technique. In the non-stationary bifurcation diagrams,
penetrations can be easily observed during the forward and reverse transitions, and their absolute values
increase with that of accelerations in all cases. Jumps exist only in forward period doubling transitions,
which indicate the quick increases of the amplitudes of motion. Time flows and orbit trajectories are also
presented to illustrate the non-stationary transition processes visually.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-stationary processes occur naturally and widely in engineering field and physical world: in
start-up and shut down of engines, in chemical and biochemical systems, in the movements of
water, earth, air, etc. In stationary systems, all control parameters remain constant, whilst in non-
stationary processes, one or more control parameters are time (process) dependent over extended
ranges [1]. The early developments in non-stationary systems are attributed to two monographs
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by Mitropolskii [1] and Evan-Iwanowski [2]. The recent achievements can be found in extensive
publications [3–9]. Besides the characteristics of non-stationary processes of Duffing’s oscillators
which have been investigated over many years, some significant phenomena have also been
revealed in recent years from actual complex systems, e.q. the shear deformable orthotropic
plates, the laminated angle-ply column, a string with time-varying length and a mass–spring
system attached at the lower end (a basic model of an elevator system), etc. The most
typical phenomena existing in non-stationary processes are known as elimination of the
discontinuities or jumps, though the transitions in stationary processes are smooth and
penetration (delay or memory) together with anticipation, i.e., the transitions appear later or
before compared to that in the stationary case as the concerned control parameter is varied in
same direction. Bifurcation diagram is a useful tool to reveal visually the panorama of the non-
stationary processes, including jumps, penetrations and anticipations, over extended parameter
ranges. To overcome the shortage of the commonly used phase portraits or Poincar!e maps, which
give inadequate information because of the overlapping dynamical responses within ranges of
time, the non-stationary bifurcation map (NBM) was suggested in Ref. [4] which determines
the non-stationary bifurcation diagrams by recording the responses at the consecutive peaks of
the forcing.
Non-stationary processes occur in rotor system in the stages of start-up and shut-down. But

compared with the extensive studies on stationary processes, studies on non-stationary processes
are rather limited. Recently, the non-stationary motions of rotor systems in rub events are
reported. Yanabe et al. treated a rubbing problem when the unbalanced rotor is supported by
springs and dampers and accelerated at a constant angular acceleration. The non-stationary rotor
vibration due to collision with annular guard during passage through the critical speed is
calculated. The result shows that the rotor cannot pass through the critical speed due to
occurrence of backward whirl [10]. Ding and Chen investigated the partial differential equations
governing the shaft/casing system with rubs using an explicit stable finite difference scheme. The
result suggests that during passage through the first several critical speeds accelerated at a
constant angular acceleration, the instability of the system can lead to the shaft’s structural failure
ultimately due to unlimited increase of the bending moments and stresses [11].
This paper deals with non-stationary processes of a rotor/bearing system. The rotating angular

speed is taken as control parameter and increased or decreased linearly at different levels of
angular acceleration. First, the stationary bifurcation diagrams are determined using the
customary Poincar!e maps. Then the non-stationary bifurcation diagrams are determined using the
NBM technique. Some phenomena occurring in the processes of the non-stationary period-
doubling transitions and the quasi-periodic transitions are uncovered in cases of positive and
negative accelerations. Processes of transitions are revealed by presenting time flows and orbit
trajectories.

2. Equation of motion

An isotropic flexible shaft attached with two imbalanced disks and supported at its two ends on
lubricated bearings is considered (Fig. 1). The masses of disks 1 and 2 are m1 and m2 with
eccentricity e1 and e2; the lumped masses at two ends of the shaft are m3 and m4, respectively. The
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equivalent stiffnesses of the shaft in three spans are

k1 ¼ k11 þ k12; k2 ¼ �k12; k3 ¼ k21 þ k22; ð1Þ

where kij (i, j =1, 2) are deduced from the simple beam theory:

k11 ¼ 12
L2
2L3EG

L2
1L

; k12 ¼ k21 ¼ �6
ð�L2

1 þ 2L2L3 � L2
2ÞL3EG

L1ðL3 � L2ÞL
; k22 ¼ 12

ðL3 � L1Þ
2L3EG

ðL3 � L2
2Þ

2L
;

L ¼ L1 � L2ð Þ2½4L2L3 � ðL1 þ L2Þ
2�;

where E is Young’s elastic modulus, and G the second moment of area of the cross-section
of the shaft. Note that the effect that resulted from deviations of displacements from the plane
vertical to shaft’s axis are not included. Suppose bearings 3 and 4 are identical in size with
parameters L, R and d; the length, radius and mean radial clearance, respectively. m is the viscosity
of the lubricating oil; and fix and fiy (i=3, 4) are the hydrodynamic forces generated in
bearings 3 and 4 in x and y directions, respectively. The non-dimensional hydrodynamic forces are
derived as

Fix ¼
fix

sWi

; Fiy ¼
fiy

sWi

; s ¼
mORL

Wi

R

d

� �2
L

2R

� �2

; Wi ¼ mig; i ¼ 3; 4: ð2Þ

In non-stationary regime, starting from an initial angular velocity o0; the shaft is accelerated at
a constant angular acceleration a: The rotational angle and the angular speed of the rotor can be
expressed in the following form:

f ¼ 1
2
at2 þ o0t; ’f ¼ O ¼ at þ o0: ð3Þ
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Fig. 1. Model of rotor/bearing system.
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The equations of motion are deduced as

W1

g
.x1 ¼ �k1 x1 � 2

3
x3 � 1

3
x4

� �
� k2 x1 � 1

3
x3 þ 1

3
x4 � x2

� �
þ m1e1ð ’fÞ

2 cosðfÞ þ m1e1a sinðfÞ;

W1

g
.y1 ¼ �k1 y1 � 2

3
y3 � 1

3
y4

� �
� k2 y1 � 1

3
y3 þ 1

3
y4 � y2

� �
� W1 þ m1e1ð ’fÞ

2 sinðfÞ � m1e1a cosðfÞ;

W2

g
.x2 ¼ �k2 x2 þ 1

3x3 � 1
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� �
� k3 x2 � 1

3x3 � 2
3x4

� �
þ m2e2ð ’fÞ

2 cosðfþ bÞ þ m2e2a sinðfþ bÞ;

W2

g
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3
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3
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� �
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3
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3
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W3

g
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3
x3 � 1

3
x4

� �
þ f3x;

W3

g
.y3 ¼ k1 y1 � 2

3
y3 � 1

3
y4

� �
� W3 þ f3y;

W4

g
.x4 ¼ k3 x2 � 1

3
x3 � 2
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g
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ð4Þ

where Wi ¼ mig; i ¼ 1; 2:
Introducing the following non-dimensional quantities:

t ¼

ffiffiffiffiffiffiffi
k11

m1

s
t ¼ gt; Xi ¼

xi

d
; Yi ¼

yi

d
; %mi ¼

m1

mi

; i ¼ 1; 2; 3; 4; %ei ¼
ei

d
; i ¼ 1; 2;

%ki ¼
ki

k11
; i ¼ 1; 2; 3; %o0 ¼

o0

g
; %a ¼

a
g2
; %g ¼

g

dg2
:

Eq. (4) are then rewritten in the following dimensionless form:

X 00
1 ¼ � %k1ðX1 � 2

3
X3 � 1

3
X4Þ � %k2ðX1 � 1

3
X3 þ 1

3
X4 � X2Þ þ %e1ðf

0Þ2cosðfÞ þ %e1 %asinðfÞ;

Y 00
1 ¼ � %k1ðY1 � 2

3
Y3 � 1

3
Y4Þ � %k2ðY1 � 1

3
Y3 þ 1

3
Y4 � Y2Þ � %g þ %e1ðf

0Þ2sinðfÞ � %e1 %acosðfÞ;

X 00
2 ¼ � %k2 %m2ðX2 þ 1

3
X3 � 1

3
X4 � X1Þ � %k3 %m2ðX2 � 1

3
X3 � 2

3
X4Þ þ %e2ðf

0Þ2cosðfþ bÞ þ %e2 %asinðfþ bÞ;

Y 00
2 ¼ � %k2 %m2ðY2 þ 1

3Y3 � 1
3Y4 � Y1Þ � %k3 %m2ðY2 � 1

3Y3 � 2
3Y4Þ � %g þ %e2ðf

0Þ2sinðfþ bÞ � %e2 %acosðfþ bÞ;

X 00
3 ¼ %k1 %m3ðX1 � 2

3X3 � 1
3X4Þ þ s %gF3X ;

Y 00
3 ¼ %k1 %m3ðY1 � 2

3
Y3 � 1

3
Y4Þ � %g þ s %gF3Y ;

X 00
4 ¼ %k3 %m4ðX2 � 1

3
X3 � 2

3
X4Þ þ s %gF4X ;

Y 00
3 ¼ %k3 %m4ðY2 � 1

3
Y3 � 2

3
Y4Þ � %g þ s %gF4Y ;

ð5Þ

where ð Þ0 ¼ dð Þ=dt: f ¼ 1
2%at

2 þ %o0t; f0 ¼ %atþ %o0: Instead of the steady ‘‘p’’ or ‘‘2p’’ film
cavitation model, Zhang et al adopted the zero-upper and -lower boundary conditions, i.e., the
free boundaries of the outline of oil film were determined at the points with zero pressure, in
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deducing a non-steady non-linear hydrodynamic forces generated by oil film [12]. For short
bearing, the non-dimensional hydrodynamic forces FiX, FiY (i=3,4) are calculated by the
analytical model as stated in the Appendix.
The following values of realistic physical parameters are used in numerical simulation:

m1=1.0 kg, m2=0.6 kg, m3=m4=0.2 kg, L3=3L1=
3
2
L2 =0.8m, d=0.011m (diameter of the

shaft), E=200GPa; R=12.5mm, L=16mm, d =0.25mm, m=0.0373N s/m2.

3. Stationary bifurcations

Stability analysis shows that the perfectly balanced system (5) (i.e., %ei ¼ 0; i=1, 2), loses its
stability through Hopf bifurcation. Analyzing the eigenvalues of the linearized perturbation
system at static equilibrium position can result in threshold speed and dimensionless whirl
frequency [13]. For the mass imbalanced system (5) (i.e., %e1a0 and/or %e2a0), behaviour of the
periodically perturbed Hopf bifurcation depends on the level of mass imbalance. Generally,
smaller level of mass imbalance yields quasi-period bifurcation, whilst larger level of mass
imbalance yields period doubling bifurcation.
Letting a ¼ 0 and applying Runge–Kutta–Fehlerg integration to solve Eq. (5), bifurcation

diagrams are obtained using the brute-force algorithm [14] as the control parameter, the
rotational angular speed of the rotor, increases or decreases in a stationary manner as shown in
Figs. 2 and 3.
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Fig. 2. Stationary period-doubling bifurcation (%e1 ¼ %e2 ¼ 0:4 and b ¼ p=6): (a) bifurcation diagrams with varying

angular speed, (b) orbit trajectory and Poincar!e map (O=550 s�1).
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For the rotor with larger level of mass imbalance (%e1 ¼ %e2 ¼ 0:4 and b ¼ p=6) a sequence of
forward period doubling bifurcations leads the system enter into chaotic regime (see Fig. 2(b)),
and then it experiences a sequence of reverse period doubling bifurcations. All the forward and
reverse transitions of motion are smooth in bifurcation diagrams. The rotor enters into a limit
periodic motion, i.e., there no further qualitative change in the state of motion as the control
parameter varies further [1] with period 2 when speeding up and return back to one with period 1
when speeding down. The periodic motion with period 2n (n=0, 1, 2, 3, y) is referred as 2nP

motion or simply 2nP in the following. The transition from 2n�1P to 2nP, or from 2nP to 2 n�1P,
occurs smoothly as the control parameter arrives at a critical speed, which is referred in the
following as bifurcation or transition speed. For example, the transition speeds of 2P to 4P
(before the chaotic regime) and 4P to 2P (after the chaotic regime) are 580 and 1050 s�1,
respectively, as the rotor speeds up. Conversely they are 1050 and 580 s�1, respectively, as the
rotor slowly down (see Table 1).
For the rotor with smaller level of mass imbalance (%e1 ¼ 0:01; %e2 ¼ 0:02 and b ¼ p=3), the

transition from P motion to quasi-periodic motion (referred as QP motion or QP later) or from
QP motion to P motion when the rotor speeds up or down, respectively, occurs at the transition
speed 495 s�1. The QP motion lasts over a broad range of the control parameter and settles down
gradually to a motion which occupies the full inside space of bearing, with a slow whirling speed.
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Fig. 3. Stationary quasi-periodic bifurcation (%e1 ¼ 0:01; %e2 ¼ 0:02 and b ¼ p=3): (a) bifurcation diagrams with

varying angular speed, (b) orbit trajectory and Poincar!e map(O=550 s�1).
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One can easily find a ‘‘window’’ of 2P among the QP motion regime over the O range of 520 –
529. It is actually the subharmonic resonance with order 1/2. Such a phenomenon is referred as
‘‘mode-locking’’, which often occurs in the dynamical systems with strong, especially non-smooth,
non-linearity [15].

4. Non-stationary bifurcations

4.1. Non-stationary bifurcation map

On the basis of the NBM [4] and in consideration of the characteristic of the mass imbalanced
excitation, we define the non-stationary maps by recording the responses X and Y of Eq. (5) at
consecutive peaks of normal inertial imbalance force of disk 1 projected in positive X direction,
i.e., at the time tN resulting from the maxima of the function cosð1

2%at
2 þ %o0tÞ :

tN ¼
%o0

%a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4pN %a= %o2

0Þ
q

� 1

� �
; N ¼ 0; 1; 2;y; ð6Þ

where N denotes the number of evolution cycles. Note that the non-stationary maps can be
presented in terms of N; tN or OðtNÞ; respectively. For stationary case with %a ¼ 0; the mapping
points used to construct bifurcation diagram, for any concerned value of the control parameter,
are obtained at the consecutive sections of time tN ¼ N 	 2p= %o0 when the motion is in steady
state (after transient process). The number of mapping points must be larger than the period
number of current periodic motion or large enough for current non-periodic motion (such as the
quasi-periodic or chaotic ones). For example, projecting the points in Poincar!e map on the Y1-axis
(Fig. 3(b)), one gets the mapping points in bifurcation diagram O� Y1 corresponding to
O ¼ 550 s�1, see Fig. 3(a), whereas for non-stationary case with %aa0; only one mapping point will
be obtained for any concerned value of the control parameters, i.e., N; tN or OðtNÞ: So the
construction of non-stationary bifurcation diagrams on the basis of such non-stationary maps
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Table 1

Transition speeds (s�1) of the stationary and nonstationary period doubling bifurcations, and corresponding

penetration values (s�1)

a (s�2) Transitions (bifurcations) of motion

P32P 2P34P 4P38P Chaotic regime 8P34P 4P32P

0 (Stationary) 460 580 642 — 875 1050

12 472(12) 599(19) 657(15) — 882(7) 1057(7)

�12 446(�14) 572(�8) 637(�5) — 860(�15) 1012(�38)

24 480(20) 608(28) 670(28) — 884(9) 1061(11)

�24 438(�22) 565(�15) 634(�8) — 850(�25) 1000(�50)

48 487(27) 626(46) * — 885(10) 1066(16)

�48 432(�28) 564(�16) 630(�12) — * 973(�77)

Annotation: Transitions: from left to right for a > 0; and from right to left for ao0; numbers among the parentheses

are corresponding penetration values.

*Represents that the transition speed is hardly to be determined.
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allow us to identify the individual types of dynamical responses (periodic, quasi-periodic and
chaos) and their ranges in terms of control parameters of interest. It offers considerable
advantages over the commonly used phase portrait or Poincar!e maps in that the latter two may
present inadequate information by the overlapping of various types, or even the same type,
dynamical responses within the ranges of time.

4.2. Non-stationary period doubling bifurcations

For the case %e1 ¼ %e2 ¼ 0:4 and b ¼ p=6; the non-stationary period doubling bifurcations
(transitions) occur as the rotor speeds up or down at a certain level of acceleration. That is after
experiencing a sequence of successive transitions from 2n�1P to 2nP; the system enters into chaotic
regime and then experiences a sequence of reverse successive transitions from 2nP to 2n�1P; as
shown in Fig. 4 (a ¼ 24 and �24 s�2). Comparing to stationary case, the non-stationary period
doubling bifurcation has following characteristics:
(1) There are obvious jumps in bifurcation diagrams during forward transitions. In other

words, the transition from the periodic motion with smaller period number to that with larger
period number, i.e., 2n�1P to 2nP; are non-smooth, whereas the reverse bifurcation processes, i.e.,
2nP to 2n�1P; are smooth.
(2) Penetration is defined as the difference between the control parameter values at which the

stationary and non-stationary transitions of same order occur [3]. For the concerned rotor/
bearing system, it is the difference between the stationary and non-stationary transition speeds of
the same order of bifurcation. Calculations show that there exist penetrations in both forward and
reverse transitions, and penetration value increases with the value of acceleration (both values are
absolute whenever they are concerned hereafter). Taking a=12, 24 and 48 s�2 for example, the
penetration values are 12, 20 and 27 s�1) for transition P to 2P, and 7, 11 and 16 s�1 for 4P to 2P.
For a=�12, �24 and �48 s�2, they are �38, �50 and �77 s�1, respectively, for transition 2P to
4P. More details can be found in Table 1. This fact suggests that the penetration phenomena can
reasonably be owed to the rotational inertia effect. Subsequently, the jumps in bifurcation
diagrams during forward transitions can also be owed to penetrations. Comparably, the
penetration values in forward transitions are generally larger than that in reverse transitions.
(3) Due to penetrations, the existing ranges of periodic motions on control parameter axis are

compressed to zero quickly as the period number increases in forward transitions. For example,
the transition speed of 4P to 8P for a=48 s�2 can hardly be determined. In fact, the motion is
nearly in chaotic regime just after occurrence of transition 2P to 4P. Because the penetration
values in forward transitions are generally much larger than that in reverse transitions, the
existing range of chaotic motion is also compressed narrower and narrower with increase of a:
Details of non-stationary period doubling transitions, P to 2P to 4P to chaos to 4P to 2P, are

revealed by the time flows and the orbit trajectories in (X1, Y1) plane as presented in Fig. 5. One
finds that so-called ‘‘periodic motions’’ in non-stationary process are only similar to those in
stationary process. For example, orbit trajectory of the non-stationary P motion is a nearly but
never a closed circle. In addition, orbit trajectory is always smooth during any transition. So the
jumps in bifurcation diagrams indicate only the quick increase of the amplitude of motion.
Obviously, the amplitude of the motion increases monotonically with the successive appearances
of the forward and reverse transitions as O is increased.
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Fig. 4. Non-stationary period doubling bifurcation diagrams with varying cycle and angular speed

(%e1 ¼ 0:4; %e2 ¼ 0:4 and b ¼ p=6): (a) a=24 s�2 and o0=360 s�1 (b) a=�24 s�2 and o0=1200 s�1.
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4.3. Non-stationary quasi-periodic bifurcations

For the case %e1=0.01, %e2=0.02 and b ¼ p=3; non-stationary quasi-periodic motion bifurcates
from P motion as the rotor speeds up, whereas the quasi-periodic motion transits to P motion as
the rotor speeds down, as shown in Fig. 6 (a=24 and �24 s�2). The non-stationary quasi-periodic
bifurcation diagrams look very different from the stationary ones. The reason is that in
construction of the non-stationary diagram, only one, rather than many, mapping point was
employed for any concerned value of the control parameter, as already mentioned in Section 4.1.
As well known, there are two basic frequency components in QP motion. One is the rotating
frequency of the rotor, which represents the forced vibration of the system induced by the mass
imbalance. Another one with lower value represents the self-excited vibration after occurrence of
bifurcation. It makes the non-stationary bifurcation diagram look like that of period 2 motion.
But as the ratio of the values of these two frequencies is irrational, the motion synthesized by them
is only the ‘‘almost-periodic’’ or ‘‘quasi-periodic’’. It makes the non-stationary bifurcation
diagram appear like contour line of time flow of a vibration response with ‘‘beating’’ behaviour
with varying control parameter. The length of a section of beating in time axis is what has been
referred a ‘‘quasi-period’’ of the QP. The difference in appearances between the QP motion and
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Fig. 5. Transitions from P to 2P; 2P to 4P; 4P to Chaos; and 4P to 2P. (%e1 ¼ 0:4; %e2 ¼ 0:4
and b ¼ p=6; o0 ¼ 360 s�1 and a ¼ 12 s�2): (a) Time flows (Omega=O); (b) orbit trajectories in plane (X1, Y1).
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Fig. 5 (continued).
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Fig. 6. Non-stationary bifurcation diagrams with varying cycle and angular speed ð%e1 ¼ 0:01; %e2 ¼ 0:02 and b ¼ p=3Þ:
(a) o0 ¼ 460 ðs�1Þ and a ¼ 24 ðs�2Þ (b) o0=800 s�1 and a=�24 s�2.
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chaotic motion, for the latter there is no such a basic ‘‘quasi-period’’ as the former, is also much
larger in non-stationary case than that in stationary case, see Figs. 6 and 4 for comparison.
Fig. 7 gives details of non-stationary transitions from P to QP and from QP to P, by time flows

and orbit trajectories in (X1, Y1) plane. The characteristics of the non-stationary quasi-periodic
bifurcations are listed in the following:
(1) There is no jump in both forward, P to QP, and reverse, QP to P, transitions. Nevertheless,

the increase of amplitude of motion after P to QP transition in non-stationary case is still much
faster than that in stationary case.
(2) Penetrations exist in both the forward and reverse transitions. Note that the stationary

transition speed is 495 s�1. The penetration values increase with that of acceleration. For example,
the transition speeds and corresponding penetration values of P to QP are 525/30, 528/33 and
531/36 s�1 for a=12, 24 and 48 s�2, respectively, whereas the transition speeds and corresponding
penetration values of QP to P are 472/�23, 455/�40 and 436/�59 s�1, for a=�12, �24 and
�48 s�2, respectively. The penetration value of QP to P transition is larger and increases faster
than that of P to QP transition as the acceleration increases. The reason is that comparing to the
smaller forced vibration component, resulting from the small level of mass imbalance, the self-
excited whirling component is predominant in QP motion and has strong ability to keep this type
of motion owing to the whirling inertia effect.
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Fig. 7. Non-stationary transitions from P to QP and QP to P ð%e1 ¼ 0:01; %e2 ¼ 0:02 and b ¼ p=3Þ: (a) o0 ¼ 460 s�1

and a ¼ 24 s�2 (b) o0 ¼ 670 s�1 and a ¼ �24 s�2:

Q. Ding, A.Y.T. Leung / Journal of Sound and Vibration 268 (2003) 33–48 45



(3) The limit motion of non-stationary quasi-periodic transitions as the rotor speeds up is also a
half-frequency whirling (or whip) in the full space inside the bearings. Fig. 7 shows that its orbit
trajectory looks like a P motion because the self-excited vibration component is in predominance.
When the rotor speeds down, more ‘‘beatings’’ will be experienced before transiting from QP to P.

5. Conclusions

The non-stationary processes can be effectively revealed using non-stationary bifurcation
diagrams, constructed on basis of the NBM, in terms of both the number of evolution cycle and
rotating angular speed. The non-stationary period doubling transitions include forward
transitions (from 2n�1P to 2nP), chaotic regime and reverse transitions (from 2n�1P to 2nP),
whether the rotor speeds up or down. The limit periodic motions with periods 2 and 1 correspond
to speeding up and down. Penetrations exist in both forward and reverse transition processes,
with an increasing absolute value with that of acceleration. Penetrations in forward transitions
bring jumps in non-stationary bifurcation diagrams, which indicate the rapid increases of the
amplitudes of responses. Penetrations exist also in non-stationary transitions, from periodic
motion to quasi-periodic motion, as the rotor speeds up and the reverse one occurs as the rotor
speeds down. Because the self-excited whirling component is predominant in quasi-periodic
motion and has strong ability, owed to the whirling inertia effect, to keep such a state of motion,
penetration of the latter transition is more obvious than that of the former transition. In addition,
though there is no jump, the amplitude of quasi-periodic response in non-stationary case increases
much faster as the speed increases, after occurrence of the forward transitions, than that in
stationary case.
In engineering, the transition from P to quasi-periodic motion or P to 2P motion is referred as

occurrence of oil whirl/whip, or lower-frequency vibration of the rotor/bearing systems. It is
unfavourable to the safe operations. Not like the effective application to avoid the failure in
passage through the critical speed due to occurrence of backward whirl from the rub events,
speeding up in a certain level of acceleration could only delay but not avoid the occurrences of oil
whirl/whip. What is worse, the rapidly increase of amplitude of response after occurrences of oil
whirl/whip brings more violent and harmful vibration to the system.

Acknowledgements

This research was supported by the NNSF of China under Grant No. 10272078.

Appendix A. Expression of the non-dimensional hydrodynamic force ði ¼ 3; 4Þ

FiX

FiY

" #
¼ �

C

f0

X
0

i

Y
0

i

" #
� K

Xi

Yi

" #
; C ¼

c11 c12

c21 c22

" #
; K ¼

1

2

�C2 C3

�C3 �C2

" #
;

c11 ¼ C1cos
2jþ C3sin

2j� C2sin2j; c22 ¼ C1sin
2jþ C3cos

2jþ C2sin2j;
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c12 ¼ c21 ¼ C2ðcos2j� sin2jÞ þ 1
2
ðC1 � C3Þsin2j;

C1 ¼
4ee0A 3A2 þ ð2� 5e2Þe2 F0 � 1

2

� �2h i
ð1� e2Þ2 A2 � e4 F0 � 1

2

� �2h i2 þ
2þ 4e2

ð1� e2Þ5=2
Dj;

C2 ¼
8e4A F0 � 1

2

� �3
A2 � e4 F0 � 1

2

� �2h i2;

C3 ¼
4ee0A A2 þ ðe3 � 2Þe2 F0 � 1

2

� �2h i
ð1� e2Þ A2 � e4 F0 � 1

2

� �2h i2 þ
2

ð1� e2Þ3=2
Dj;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e02 þ F0 � 1

2

� �2e2q
; Dj ¼ pþ 2tan�1 ee0

Að1� e2Þ1=2

 !
;

where

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

i þ Y 2
i

q
; e0 ¼

XiX
0
i þ YiY

0
i

ef0 ; F0 ¼
XiY

0
i � YiX

0
i

e2f0 ; cos j ¼
Xi

e
:
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